HEAT TRANSFER OF A CYLINDER IN A
COMPLEX SOUND FIELD
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It is well known that the heat-transfer process in a sound field is intensified in comparison with the
stationary case, in which case it was shown [1] that these changes are due to stationary secondary flows. The
case of a simple sound field is investigated in the overwhelming majority of cases. As shown in [2], however,
the structure of stationary secondary flows in a complex sound field is considerably modified, which must be
reflected in both local and integral characteristics of the heat-transfer process,

Consider heat transfer of a circular cylinder of radius a, placed in a high-frequency complex sound
field consisting of two plane waves, The surface temperature of the cylinder Ty and of the surrounding me-
dium T is assumed to be constant, while the temperature difference (%w - T’,o) is assumed to be so small
that the change in physical properties of the fluid, as well as natural convection, can be neglected, Neglecting
also dissipation effects, the energy equation is written in the form
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with boundary conditions

T=1fox r=0,T =0for r— oo,
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where T = (T — Tm)/(i"w - Tw). The remaining quantities are defined in [2],
As & « 1, by using a perturbation method we reach a solution of Eq, (1) in form of the series
T =Ty —el; — Ole?).
Using a similar expansion for the stream function ¢ and substituting in Eq, (1), we obtained [3]
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where ¢1(St) is the stream function of stationary secondary flow in the external region,

The solution of Eq. (3) must satisfy the second condition of relation (2), and for r —~ 0 is asymptotically
matched with the solution in the internal region,

Using the internal variables defined by Eq, (7) of [2], as well as putting Regt = 0(1) and (£*Pr) = 0(1),
Eqg. (1) is written in the form [3]
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where F is the temperafure in the internal region (Stokes layer). We seek a solution of (4) in the form
F = Fy 4 eFy + 0(e?).
It was shown [3] that the first expansion term is the solution of the equation
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where ml(f,st) is the stream function of the internal secondary flow.

1t follows from Eq, (5) that if (e2Pr) « 1, the internal region is essentially thermally conducting. When
(e?Pr) » 1, the width of the temperature layer is considerably less than the width of the Stokes layer, and in-
ternal flows play an important role in the heat-transfer process. This fact was first established in [1].

When the heat-transfer process is determined by external flows, the temperature field is described by
Eq. (3). It can be seen that for (PrRegt) > 1 the whole external thermal region has the nature of a boundary
layer whose width is on the order of Ola(Pr Rest)"‘/ %], Taking this fact into account, we also introduce var-
iables corresponding to a thermal boundary layer, in which the temperature is O(1) and the stream function
O(w), where = (PrRegy)~1/? « 1, Then

t, (Y, 0) =Ty (r, 8), ¥ = u=r, ¢ = . ©)

We note that since in what follows we use the solutions of the hydrodynamical part of the problem, ob-
tained under the assumption Regi « 1, the condition (PrRegt) » 1 implies that we consider the case of large
Prandtl numbers, i.e., Pr » 1,

The internal expansion of the external stream function zp{ﬁ’t) is written in the form
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Using the smallness condition of %, the solution of Eq, (3) is expanded in the series
to = {o0 + xtol + 0(9(2). (8)

Substituting (7) and (8) into Eq. (3) and restricting ourselves to first-orderterms in », we obtain the follow-
ing equation in terms of the variables of Eq, (6):

8(z: tyo) __ é_’z_t_og
I(Y.0)  oay? 9
with boundary conditions
too == O for ¥ — o0, tOO = 1. for Y =0. (10)

The second boundary condition of (10) follows from the fact the region of the Stokes layer is essentially ther-
mally conducting, due to which one can neglect the temperature change in this region, This is satisfied by the
condition (€2 Pr) « 1, which imposes an upper bound on the Prandtl number,

Since the analytic representation of ¢f§t) depends on the relation between the frequencies of the two
waves [2], we consider the case of different frequencies, We place the coordinate system at the leading point
of external secondary flows at the cylinder surface, introducing the variable

B%~%sin 20
0y = 20 —arctg | ————1— | +
1-+ B cos20,;

Using (7), as well as relation (25) of [2], Eq. (9) is written in the form
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whose solution is
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where

N, \1/2
z, = (—2-1) Y cos(0,/2); Ny = (14 2B%~2cos 20, 4-Bih-11/2;

and I'(@) is the gamma function, Using (11), we calculate the local and integral heat-transfer coefficients,
evaluated at the cylinder radius

1/2
Nua=[6‘ /

+) (Pr Regy)/2 (1--2B%2 cos 26, B~/ | cos (0,/2)},

— {
Nu, — 0.88 (PrRest)/? (1-- 2822 cos 20, -+ BH~—4)1/2, (12)

It can be noted that for B = 0 expression (12) transforms to the dependence characterizing the heat-transfer
process of a circular cylinder in a simple sound field {1]

Nug = (S} (PrRegy?2 | cos (O %/2)1,
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where D is the thermal-conductivity coefficient of the fluid and A; and w; are the velocity amplitude and
frequency in the first wave. In expressions (12), (13) the absolute value is chosen, since the thermal conduc-
tivity coefficient is a positive quantity,

Thus, the analytic dependence describing heat transfer of a cylinder in a complex sound field for the
case of different oscillation frequencies differs from the analog expressions for a simple sound field only by
the presence of an additional factor of the form

(1 + 2B~ cos 20, + B-4)/4,

while the nature of the distribution of the local heat-transfer coefficient over the cylinder surface does not
change, the distribution is symmetric with respect to the line passing through the extremum and the center
of the cylinder (Fig, 1a), and the maximum of the heat-transfer coefficient coincides with the leading point of
external flows at the cylinder surface,

Consider the conditions under which the presence of a second oscillatory motion leads to enhancement
of the heat-transfer process in comparison with the case of a simple sound field, i.e.,

1 - 2B%2cos 20; + B%~t>1 o« (Bb~1* > —2 cos 20,. {14)

It follows from the latter relation, in particular, that independently of the amplitude —frequency relations the
heat-transfer process in a complex sound field occurs more intensely than in a simple field if the angle be-
tween the propagation directions of the two waves satisfies the condition

0 < nlh+nanln=01,...

Fig. 1
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It can be verified that for 6; = 0 or 7 there is maximum enhancement of heat transfer for assigned values
of b and B, Besides, if (Bb-})? > 2, the presence of a second oscillation also leads to enhancement of heat
transfer independently of the value of 6;, When relation (14) is not satisfied the presence of a second oscilla-
tion worsens heat transfer in comparison with the case of a simple sound field, while this situation can be
realized when the presence of a second oscillation completely suppresses convective heat transfer, This
occurs when '

1 - 28252 cos 20, + B%—* = 0
(15)

or
B=0b0 =nl2n+1)/2(r=01,...).

Thus, when the planes of both oscillations are perpendicular to each other and the amplitude—frequency re-
lations obey Eq, (15), a cylinder placed in a complex sound field does not exchange energy with the surround-
ing space, This implies that heat-transfer processes by convection occur significantly more slowly than by
thermal conductivity, At first glance this odd pattern is explained by the fact that under the conditions enu-
merated above, the external secondary flows generated by each oscillatory motion cancel each other, accur-
ately up to terms of order O(850/a).

Consider the case of identical frequencies, Placing the coordinate system at the leading point of exter-
nal secondary flows and using relation (32) of [2], as well as Eq. (7), Eq. (9) is written in the form
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where A= arcsin A; A = (2B sin 6, «sin ¢)/N,, and
N, ={(1+ B?cos 20, + 2B cos ¢-cos 0,)° 4 (B? sin 26, -}-2B sin 6, cos ¢)*}/%;
Oy = =+ [20 — P — arctg (D/C) — xn]; D = Bsinb,-cosq
-]-—-;—B2 sin26;; C =-;——{—Bcosf)l-cosm—l-%B2 cos 26,

wherethe plus signrefers to the case in which the fluid flow near the surface occurs clockwise, and the minus
sign refers to counterclockwise flow,

Introducing the variable
. (3N2)1/2Y sin (o, + B) F 4
R [V1— 2 —cos (o, £ B) T 40,]¥’

Edq. (16) is reduced to an ordinary differential equation, whose solution is described by relation (11) with the
only difference that x; must be replaced by x;.. The expressions forthe local and integral heat-transfer co-
efficients then acquire the form

Nug = ()" (PeReg) 2 MY il 1 i
a7 \m
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Y3 PrReg)/2 NY2[(29/T— 42 + 24p — Am)v/2
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Figure 1 shows the distribution of the local heat-transfer coefficient over the surface of the cylinder
for different values of the phase difference (@ —¢ = 0, b~ ¢ = 45°), while

N, = (2] an

(82 PI‘) << 1-: 0 = My, Al = A27

B =1, §; = 90°. Under certain conditions the distribution of the local heat-transfer coefficient is not sym-~
metric with respectto the line passing through the leading point of the external secondary flows and the center
of the cylinder. This asymmetry is due to the presence of large-scale circulatory motion, whose intensity is
characterized by the parameter A, When A = 0 large-scale motion is absent and the nature of secondary
flows, as well as the distribution of the local heat-transfer coefficient, coincide accurately up to corrective
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factors with similar effects occurring in a simple sound field (see Fig, 1a), In particular, 1f B=10, 1.9., the
second oscillation is absent, A = 0, N, = 1, and expressions (17) reduce to (13),

Excluding the case B = 0 from consideration, it can be said that the heat-transfer coefficient in 2 com-
plex sound field is maximum for 6; = ¢ = 0, while

Nug = 0.88(Pr Reg )1 + B),

‘i.e., heat transfer is determined by the fotal velocity amplitude,

When B=1, 6,=0, ¢ =7 (or 6; =7, ¢ =0) there is no oscillatory motion, since the oscillatior;_s___gan—
cel each other, and therefore there is no stationary motion of the fluid. This leads to the consequence Nuy, =
0.

Thus, the presence of large-~scale circulatory flow leads to asymmetry in the distribution of the local
heat-transfer coefficient, where to the extent of intensity enhancement of this motion (the parameter A in-
creases) there is a suppression of Schlichting flow, and for A > 1 there is no region of reciprocal flow, We
mention that relations (17) were obtained for A =<1, If can be shown that when A increases, heat exchange
worsens, and for B=1, 8y = ¢ = 90° there is no heat exchange, Indeed, in this case Eq. (9) reduces to an
equation of the thermal-conductivity type

2
P _ 2 ‘oe
e

Since the boundary conditions (10) have no dependence on 8, the equation reduces to
PlogldY? = 0,

whose solution, bounded at infinity, is trivial (ty, = 0).

When the heat-transfer process is determined by internal secondary flows the temperature field is de-
scribed by Eq. (5), while if (¢2Pr) > 1, the thermal boundary layer is significantly smaller than the Stokes
layer, and its transverse size is of the order of O [a(e? Pr)~1/3], Taking this into account, we introduce var-
iables corresponding to the thermal boundary layer

h = A1y, fy(R, 8) = Foln, 8), A = (% Pr)-1/3,

We expand the current function mm and the temperature t; in series:

m(s;:) = A2gl + A3Qz + 0 (A4)v, to = toe + Atol + 0 (AZ)"

(18}
where
1 62m(150t) ) ' a3m§$§> )
O, = Lpa| 00 ©Q, = L R3] )
=gk ( a* I n=o’ Q= gh ( =0
Substituting (18) into (5) and restricting the discussion to first-order terins in A, we obtain
0(01, rm)_ 1 agtnu
a0 3 (19)

with boundary conditions

too =0 for h— 0o, ly =1 for h = 0.

Consider the case of different frequencies, We place the coordinate system at the leading point of in-
ternal flows at the cylinder surface, Introducing then the variable

" B*%~'sin20
1+ B57" cos 26,
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as well as using expression (24) of [2], Eq. (19) is written in the form
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whose solution is
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The local and integral heat-exchange coefficients acquire then the form
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It there is no secondary oscillatory motion (B = 0), expression (21) reduces to the relations describing
the heat-exchange process in a simple sound field {1, 3]

Nu, 45 o\ sin'/220
va D) [ )m”

( { sin/2ydy
0

AE 1/3
Nu, = 0.52 _1_i> .
ua' (Vv(,)IQ

'The coefficient obtained, however, in expression (22) for the integral coefficient of heat exchange differs from
the result of [3]. For this reason we provide some detail.

(22)

Since the expression for the local heat-exchange coefficient (22) coincides with [1], the integral heat-
exchange coefficient is determined in the form

— Vs 1/2
Nua=%S'Nu d9=%(m;) S‘ s/ thdk
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where k= 26. The integral is calculated as follows. We denote

3
z = j. sin'/%ydy, dz = sin*/2kdk;
]

then
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)
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Using [4]

. al/?r (3/4)
1/2 1/2
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we obtain the required resuit.

It follows from relationship (22) that the analytic dependences describing heat exchange of a eylinder in
a complex sound field for the case of different oscillation frequencies differ from the analog relations for a
simple sound field by the presence of a supplementary factor of the type

{1 4 2B%~* cos 28, -+ B*2)YS,

while the distribution of the local heat-exchange coefficient over the surface of the cylinder remains sym-
metric, It canbe shownthatif B~! > —2 cos 28, the presence of a second oscillatory motion leads to en-
hancement of the heat-exchange process, while for 8; = 0 or 7 maximum enhancement occurs for assigned
values of b and B, When the oscillation planes are perpendicular to each other, and the amplitude—frequency
characteristics satisfy the relation B? = b, the presence of a second oscillatory motion completely suppresses
convective heat exchange.

Consider the case of identical frequencies (in this case it is primarily assumed that (e? Pr) > 1), Plac-
ing the coordinate system at the leading point of secondary flows and using relationship (31) of [2], Eq. (19}
is written in the form

6t 2
2hN, Isin (0, = B) F Al 52t — I*N cos (0 = ) _7;-& %6_;90 23)

where ¢, = (26 — arcgin A — arctg (D/C)).

Introducing the variable

Al

a=@ﬂY3[IMW¢m:M”

Ga 1'3
{sin(z+pF A}l/ﬁdx}
[

Eq. (23) is reduced to an ordinary differential equation whose solution is described by relationship (20), where
x3 must be replaced by x4, The expression for the local heat-transfer coefficient then acquires the form

[sin (o, & B) T 4]/

2 1/8
Nu, = 0, 6( ) N, .
D . / |
]/vm [f [sin (y + B) F All/zdy }1 ? 24)

It follows from (24) that, as in the case (€2 Pr) « 1, the distribution of the local heat-exchange coeffi-
cient over the cylinder surface is symmetric, which is due to the presence of a large-scale circulatory flow.
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